Biomechanics of lateral lumbar interbody fusion constructs with lateral and posterior plate fixation: laboratory investigation.

نویسندگان

  • Guy R Fogel
  • Rachit D Parikh
  • Stephen I Ryu
  • Alexander W L Turner
چکیده

OBJECT Lumbar interbody fusion is indicated in the treatment of degenerative conditions. Laterally inserted interbody cages significantly decrease range of motion (ROM) compared with other cages. Supplemental fixation options such as lateral plates or spinous process plates have been shown to provide stability and to reduce morbidity. The authors of the current study investigate the in vitro stability of the interbody cage with a combination of lateral and spinous process plate fixation and compare this method to the established bilateral pedicle screw fixation technique. METHODS Ten L1-5 specimens were evaluated using multidirectional nondestructive moments (± 7.5 N · m), with a custom 6 degrees-of-freedom spine simulator. Intervertebral motions (ROM) were measured optoelectronically. Each spine was evaluated under the following conditions at the L3-4 level: intact; interbody cage alone (stand-alone); cage supplemented with lateral plate; cage supplemented with ipsilateral pedicle screws; cage supplemented with bilateral pedicle screws; cage supplemented with spinous process plate; and cage supplemented with a combination of lateral plate and spinous process plate. Intervertebral rotations were calculated, and ROM data were normalized to the intact ROM data. RESULTS The stand-alone laterally inserted interbody cage significantly reduced ROM with respect to the intact state in flexion-extension (31.6% intact ROM, p < 0.001), lateral bending (32.5%, p < 0.001), and axial rotation (69.4%, p = 0.002). Compared with the stand-alone condition, addition of a lateral plate to the interbody cage did not significantly alter the ROM in flexion-extension (p = 0.904); however, it was significantly decreased in lateral bending and axial rotation (p < 0.001). The cage supplemented with a lateral plate was not statistically different from bilateral pedicle screws in lateral bending (p = 0.579). Supplemental fixation using a spinous process plate was not significantly different from bilateral pedicle screws in flexion-extension (p = 0.476). The combination of lateral plate and spinous process plate was not statistically different from the cage supplemented with bilateral pedicle screws in all the loading modes (p ≥ 0.365). CONCLUSIONS A combination of lateral and spinous process plate fixation to supplement a laterally inserted interbody cage helps achieve rigidity in all motion planes similar to that achieved with bilateral pedicle screws.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages.

BACKGROUND CONTEXT The lateral transpsoas approach to interbody fusion is gaining popularity because of its minimally invasive nature and resultant indirect neurologic decompression. The acute biomechanical stability of the lateral approach to interbody fusion is dependent on the type of supplemental internal fixation used. The two-hole lateral plate (LP) has been approved for clinical use for ...

متن کامل

Biomechanics of posterior instrumentation in L1-L3 lateral interbody fusion: Pedicle screw rod construct vs. transfacet pedicle screws.

BACKGROUND The use of pedicle screws is the gold standard for supplemental posterior fixation in lateral interbody fusion. Information about the performance of transfacet pedicle screws compared to standard pedicle screws and rods in the upper lumbar spine with or without a lateral interbody fusion device in place is limited. METHODS Fifteen fresh frozen human cadaveric lumbar spine segments ...

متن کامل

Evaluation of Two Novel Integrated Stand-Alone Spacer Designs Compared with Anterior and Anterior-Posterior Single-Level Lumbar Fusion Techniques: An In Vitro Biomechanical Investigation

Study Design In vitro biomechanical investigation. Purpose To compare the biomechanics of integrated three-screw and four-screw anterior interbody spacer devices and traditional techniques for treatment of degenerative disc disease. Overview of Literature Biomechanical literature describes investigations of operative techniques and integrated devices with four dual-stacked, diverging interb...

متن کامل

Finite Element Analysis of a New Pedicle Screw-Plate System for Minimally Invasive Transforaminal Lumbar Interbody Fusion

PURPOSE Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) is increasingly popular for the surgical treatment of degenerative lumbar disc diseases. The constructs intended for segmental stability are varied in MI-TLIF. We adopted finite element (FE) analysis to compare the stability after different construct fixations using interbody cage with posterior pedicle screw-rod or ped...

متن کامل

Novel Pedicle Screw and Plate System Provides Superior Stability in Unilateral Fixation for Minimally Invasive Transforaminal Lumbar Interbody Fusion: An In Vitro Biomechanical Study

PURPOSE This study aims to compare the biomechanical properties of the novel pedicle screw and plate system with the traditional rod system in asymmetrical posterior stabilization for minimally invasive transforaminal lumbar interbody fusion (MI-TLIF). We compared the immediate stabilizing effects of fusion segment and the strain distribution on the vertebral body. METHODS Seven fresh calf lu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurosurgery. Spine

دوره 20 3  شماره 

صفحات  -

تاریخ انتشار 2014